Probabilitas
probabilitas adalah cara untuk mengungkapkan pengetahuan atau kepercayaan bahwa suatu kejadian akan berlaku atau telah terjadi. Konsep ini telah dirumuskan dengan lebih ketat dalam matematika, dan kemudian digunakan secara lebih luas dalam tidak hanya dalam matematika atau statistika, tetapi juga keuangan, sains dan filsafat.
Probabilitas suatu kejadian adalah angka yang menunjukkan kemungkinan terjadinya suatu kejadian. Nilainya di antara 0 dan 1. Kejadian yang mempunyai nilai probabilitas 1 adalah kejadian yang pasti terjadi atau sesuatu yang telah terjadi. Misalnya matahari yang masih terbit di timur sampai sekarang. Sedangkan suatu kejadian yang mempunyai nilai probabilitas 0 adalah kejadian yang mustahil atau tidak mungkin terjadi. Misalnya sepasang kambing melahirkan seekor sapi.
Probabilitas/Peluang suatu kejadian A terjadi dilambangkan dengan notasi P(A), p(A), atau Pr(A). Sebaliknya, probabilitas [bukan A] atau komplemen A, atau probabilitas suatu kejadian A tidak akan terjadi, adalah 1-P(A). Sebagai contoh, peluang untuk tidak munculnya mata dadu enam bila sebuah dadu bersisi enam digulirkan adalah
Pendekatan Probabilitas
Ada 3 (tiga) pendekatan konsep untuk mendefinisikan probabilitas dan menentukan nilai-nilai probabilitas, yaitu : (1). Pendekatan Klasik, (2). Pendekatan Frekuensi Relatif, dan (3). Pendekatan Subyektif.
1. Pendekatan Klasik
Pendekatan klasik didasarkan pada sebuah peristiwa mempunyai kesempatan untuk terjadi sama besar (equally likely). Probabilitas suatu peristiwa kemudian dinyatakan sebagai suatu rasio antara jumlah kemungkinan hasil dengan total kemungkinan hasil (rasio peristiwa terhadap hasil).
Probabilitas suatu peristiwa = Jumlah kemungkinan hasil / Jumlah total kemungkinan hasil
Jika ada a kemungkinan yang dapat terjadi pada kejadian A dan ada b kemungkinan yang dapat terjadi pada kejadian A, serta masing-masing kejadian mempunyai kesempatan yang sama dan saling asing, maka probabilitas/peluang bahwa akan terjadi a adalah:
P (A) = a/a+b ; dan peluang bahwa akan terjadi b adalah: P (A) = b/a+b
Contoh:
Pelamar pekerjaan terdiri dari 10 orang pria (A) dan 15 orang wanita (B). Jika yang diterima hanya 1, berapa peluang bahwa ia merupakan wanita?
Jawab:
P (A) = 15/10+15 = 3/5
2. Pendekatan Relatif
Besarnya probabilitas suatu peristiwa tidak dianggap sama, tetapi tergantung pada berapa banyak suatu peristiwa terjadi dari keseluruhan percobaan atau kegiatan yang dilakukan. probabilitas dapat dinyatakan sebagai berikut :
Besarnya probabilitas suatu peristiwa tidak dianggap sama, tetapi tergantung pada berapa banyak suatu peristiwa terjadi dari keseluruhan percobaan atau kegiatan yang dilakukan. probabilitas dapat dinyatakan sebagai berikut :
Probabilitas kejadian relatif = Jumlah peristiwa yang terjadi / Jumlah total percobaan atau kegiatan
Jika pada data sebanyak N terdapat a kejadian yang bersifat A, maka probabilitas/peluang akan terjadi A untuk N data adalah: P (A) = a/N
Contoh:
Dari hasil penelitian diketahui bahwa 5 orang karyawan akan terserang flu pada musim dingin. Apabila lokakarya diadakan di Puncak, berapa probabilitas terjadi 1 orang sakit flu dari 400 orang karyawan yang ikut serta?
Jawab:
P (A) = 5/400 = P (A) = 1/80
3. Pendekatan Subjektif
Besarnya suatu probabilitas didasarkan pada penilaian pribadi dan dinyatakan dalam derajat kepercayaan. Penilaian subjektif diberikan terlalu sedikit atau tidak ada informasi yang diperoleh dan berdasarkan keyakinan.
Besarnya suatu probabilitas didasarkan pada penilaian pribadi dan dinyatakan dalam derajat kepercayaan. Penilaian subjektif diberikan terlalu sedikit atau tidak ada informasi yang diperoleh dan berdasarkan keyakinan.
Konsep Dasar dan Hukum Probabilitas
Dalam mempelajari hukum dasar probabilitas berturut-turut akan dibahas hukum penjumlahan dan hukum perkalian.
1. Hukum Penjumlahan
Hukum penjumlahan menghendaki peristiwa saling lepas (mutually exclusive) dan peristiwa/kejadian bersama (non mutually exclusive).
- Saling meniadakan (mutually exclusive)
Apabila suatu peristiwa terjadi, maka peristiwa lain tidak dapat terjadi pada saat bersamaan.
Rumus penjumlahan untuk kejadian-kejadian yang saling meniadakan:
Rumus penjumlahan untuk kejadian-kejadian yang saling meniadakan:
P (A U B) = P (A atau B)= P (A) + P (B)
Contoh:
Probabilitas untuk keluar mata 2 atau mata 5 pada pelemparan satu kali sebuah dadu adalah:
P(2 U 5) = P (2) + P (5) = 1/6 + 1/6 = 2/6
- Kejadian Bersama (Non Mutually Exclusive)
Peristiwa Non Mutually Exclusive (Joint) dua peristiwa atau lebih dapat terjadi bersama-sama (tetapi tidak selalu bersama).
Rumus penjumlahan untuk kejadian-kejadian yang tidak saling meniadakan:
Rumus penjumlahan untuk kejadian-kejadian yang tidak saling meniadakan:
Dua Kejadian
P (A U B) =P(A) + P (B) – P(A ∩ B)
Tiga Kejadian
P(A U B U C) = P(A) + P(B) + P(C) – P(A ∩ B) – P(A ∩ C) – P(B ∩ C) + P(A ∩ B ∩ C)
Peristiwa terjadinya A dan B merupakan gabungan antara peristiwa A dan peristiwa B. Akan tetapi karena ada elemen yang sama dalam peristiwa A dan B, Gabungan peristiwa A dan B perlu dikurangi peristiwa di mana A dan B memiliki elemen yang sama. Dengan demikian, probabilitas pada keadaan di mana terdapat elemen yang sama antara peristiwa A dan B maka probabilitas A atau B adalah probabilitas A ditambah probabilitas B dan dikurangi probabilitas elemen yang sama dalam peristiwa A dan B.
- Peristiwa Pelengkap (Complementary Event)
Apabila peristiwa A dan B saling melengkapi, sehingga jika peristiwa A tidak terjadi, maka peristiwa B pasti terjadi. Peristiwa A dan B dikatakan sebagai peristiwa komplemen.
Rumus untuk kejadian-kejadian yang saling melengkapi :
Rumus untuk kejadian-kejadian yang saling melengkapi :
P(A)+P(B) = 1 atau P(A) = 1 – P(B)
2. Hukum Perkalian
- Hukum Bebas (independent)
Hukum perkalian menghendaki setiap peristiwa adalah independen, yaitu suatu peristiwa terjadi tanpa harus menghalangi peristiwa lain terjadi. Peristiwa A dan B independen, apabila peristiwa A terjadi tidak menghalangi terjadinya peristiwa B.
P(A ∩ B) = P (A dan B) = P(A) x P(B)
Contoh soal 1:
Sebuah dadu dilambungkan dua kali, peluang keluarnya mata 5 untuk kedua kalinya adalah:
P (5 ∩ 5) = 1/6 x 1/6 = 1/36
Contoh soal 2:
Sebuah dadu dan koin dilambungkan bersama-sama, peluang keluarnya hasil lambungan berupa sisi H pada koin dan sisi 3 pada dadu adalah:
P (H) = ½, P (3) = 1/6
P (H ∩ 3) = ½ x 1/6 = 1/12
- Peristiwa Bersyarat (Tidak Bebas) / (Conditional Probability)
Probabilitas bersyarat adalah probabilitas suatu peristiwa akan terjadi dengan ketentuan peristiwa yang lain telah terjadi. Peristiwa B terjadi dengan syarat peristiwa A telah terjadi.
P(A dan B) = P(A x P(B|A) atau P(B dan A) = P(B) x P(A|B)
Contoh :
Dua kartu ditarik dari satu set kartu bridge, peluang untuk yang tertarik keduanya kartu as adalah sebagai berikut: Peluang as I adalah 4/52 -> P (as I) = 4/52
Peluang as II dengan syarat as I sudah tertarik adalah 3/51
P (as II │as I) = 3/51
P (as I ∩ as II) = P (as I) x P (as II│ as I) = 4/52 x 3/51 = 12/2652 =1/221
Diagram Pohon Probabilitas
Diagram pohon merupakan suatu diagram yang menyerupai pohon dimulai dari batang kemudian menuju ranting dan daun. diagram pohon dimaksudkan untuk membantu menggambarkan probabilitas atau probabilitas bersyarat dan probabilitas bersama. diagram pohon sangat berguna untuk menganalisis keputusan-keputusan bisnis dimana terdapat tahapan-tahapan pekerjaan.
Contoh:
Ruang Sampel dan Titik Sampel
Ruang sampel adalah himpunan dari semua hasil yang mungkin pada suatu percobaan/kejadian. Ruang Sampel suatu percobaan dapat dinyatakan dalam bentuk diagram pohon atau tabel.
Titik Sampel adalah anggota-anggota dari ruang sampel atau kemungkinan-kemungkinan yang muncul.
Contoh:
Pada percobaan melempar dua buah mata uang logam (koin) homogen yang berisi angka (A) dan gambar (G) sebanyak satu kali. Tentukan ruang sampel percobaan tersebut.
a. Dengan Diagram Pohon
Kejadian yang mungkin:
AA : Muncul sisi angka pada kedua koin
AG : Muncul sisi angka pada koin 1 dan sisi gambar pada koin 2
b. Dengan Tabel
Ruang sampel = {(A,A), (A,G), (G,A), (G,G)}
Banyak titik sampel ada 4 yaitu (A,A), (A,G), (G,A), dan (G,G)
Teorema Bayes
Dalam teori probabilitas dan statistika, teorema Bayes adalah sebuah teorema dengan dua penafsiran berbeda. Dalam penafsiran Bayes, teorema ini menyatakan seberapa jauh derajat kepercayaan subjektif harus berubah secara rasional ketika ada petunjuk baru. Dalam penafsiran frekuentis teorema ini menjelaskan representasi invers probabilitas dua kejadian. Teorema ini merupakan dasar dari statistika Bayes dan memiliki penerapan dalam sains, rekayasa, ilmu ekonomi (terutama ilmu ekonomi mikro), teori permainan, kedokteran dan hukum. Penerapan teorema Bayes untuk memperbarui kepercayaan dinamakan inferens Bayes.
atau
Prinsip Menghitung
1. Faktorial
Faktorial digunakan untuk mengetahui berapa banyak cara yang mungkin dalam mengatur sesuatu. Hasil perkalian semua bilangan bulat positif secara berurutan dari 1 sampai dengan n disebut n faktorial. Dari definisi faktorial tersebut, maka dapat dituliskan prinsip menghitung faktorial sebagai berikut :
Faktorial digunakan untuk mengetahui berapa banyak cara yang mungkin dalam mengatur sesuatu. Hasil perkalian semua bilangan bulat positif secara berurutan dari 1 sampai dengan n disebut n faktorial. Dari definisi faktorial tersebut, maka dapat dituliskan prinsip menghitung faktorial sebagai berikut :
n ! = n x (n-1) x (n-2) x (n-3) x … 3 x 2 x 1
n ! dibaca n faktorial
nb: 0! = 1dan 1! = 1
Contoh:
3! = 3 x 2 x 1 = 6
5! = 5 x 4 x 3 x 2 x 1 = 120
5! = 5 x 4 x 3 x 2 x 1 = 120
2. Permutasi
Permutasi digunakan untuk mengetahui jumlah kemungkinan susunan (arrangement) jika terdapat satu kelompok objek. pada permutasi berkepentingan dengan susunan atau urutan dari objek. Permutasi dirumuskan sebagai berikut :
Permutasi digunakan untuk mengetahui jumlah kemungkinan susunan (arrangement) jika terdapat satu kelompok objek. pada permutasi berkepentingan dengan susunan atau urutan dari objek. Permutasi dirumuskan sebagai berikut :
atau
dimana :
P = Jumlah permutasi atau cara objek disusun
n = jumlah total objek yang disusun
r/k = jumlah objek yang digunakan pada saat bersamaan, jumlah r/k dapat sama dengan n atau lebih kecil
n = jumlah total objek yang disusun
r/k = jumlah objek yang digunakan pada saat bersamaan, jumlah r/k dapat sama dengan n atau lebih kecil
! = tanda dari faktorial
Contoh:
Di kantor pusat DJBC Ada 3 orang staff yang dicalonkan untuk menjadi mengisi kekosongan 2 kursi pejabat eselon IV. Tentukan banyak cara yang bisa dipakai untuk mengisi jabatan tersebut?
jawab : Permutasi P (3,2), dengan n =3 (banyaknya staff) dan k =2 (jumlah posisi yang akan diisi)
Permutasi Unsur-unsur yang sama
Contoh:
Tentukan permutasi atas semua unsur yang dibuat dari kata MATEMATIKA!
Jawab: pada kata MATEMATIKA terdapat 2 buah M, 3 buah A, dan 2 buah T yang sama, sehingga permutasinya adalah:
Permutasi Siklis
RUMUS: banyaknya permutasi = (n-1)!
Contoh:
Suatu keluarga yang terdiri atas 6 orang duduk mengelilingi sebuah meja makan yang berbentuk lingkaran. Berapa banyak cara agar mereka dapat duduk mengelilingi meja makan dengan cara yang berbeda?
Jawab :
Banyaknya cara agar 6 orang dapat duduk mengelilingi meja makan dengan urutan yang berbeda sama dengan banyak permutasi siklis (melingkar) 6 unsur yaitu :
Jawab :
Banyaknya cara agar 6 orang dapat duduk mengelilingi meja makan dengan urutan yang berbeda sama dengan banyak permutasi siklis (melingkar) 6 unsur yaitu :
3. Kombinasi
Kombinasi digunakan apabila ingin mengetahui berapa cara sesuatu diambil dari keseluruhan objek tanpa memperhatikan urutannya. Jumlah kombinasi dirumuskan sebagai berikut:
Contoh:
Saat akan menjamu Bayern Munchen di Allianz arena, Antonio Conte (Pelatih Juventus) punya 20 pemain yang akan dipilih 11 diantaranya untuk jadi starter. Berapa banyak cara pemilihan starter tim juventus? (tidak memperhatikan posisi pemain).
Tidak ada komentar:
Posting Komentar